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Population genetics as a tool to understand invasion 
dynamics and insecticide resistance in indoor urban pest 
insects 
Warren Booth   

Many indoor urban pest insects now show a near-global 
distribution. The reasons for this may be linked to their cryptic 
behaviors, which make unintentional transport likely, tied to 
their reliance on human-mediated dispersal that can result in 
spread over potentially long-distances. Additionally, numerous 
species exhibit an array of mechanisms that confer insecticide 
resistance. Using population genetics, it is possible to elucidate 
the genetic characteristics that define globally successful 
indoor urban pest insect species. Furthermore, this approach 
may be used to determine the frequency and distribution of 
insecticide resistance. Here, I review the recent literature that 
utilizes population genetic analyses in an effort to identify the 
characteristics that help explain the success of indoor urban 
pests. 
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Introduction 
We currently live in an increasingly urbanized world, 
where many urban centers are characterized by elevated 
densification and expansion. By 2050, it is expected that 
over two-thirds of the human population will live in 
urban centers, and as such, patterns of human movement 
and supply chains will expand. The diversity of transport 
vectors will increase, as will transport pathways, both 
nationally and globally. With these changes, opportu-
nities for the introduction and transport of non-native 
species will increase, including those associated with the 
indoor environment. In concert, the global spread of 

many species suggests that indoor environments may be 
converging on a temperature and humidity range that is 
conducive to supporting non-native indoor pest species 
in regions where environmental conditions are otherwise 
beyond the thresholds for survival. It is therefore in-
creasingly likely that indoor urban pest insects will ex-
pand their range through human-mediated processes, 
with many becoming globally cosmopolitan. 

In addition to this proclivity for invasion, insecticide 
resistance is commonly observed in indoor urban pest 
insects. In many species, multiple mechanisms have 
evolved, translating into resistance across a diversity of 
active ingredients [1,2]. While some mechanisms are 
difficult to evaluate in large-scale field studies (e.g. cu-
ticular thickening or cytochrome P450 gene expression 
patterns), others are the result of target-site mutations 
that can be easily monitored and studied in spatio-
temporal contexts (e.g. kdr-associated mutations [3–5]). 

While the fields of conservation and population man-
agement have embraced the use of molecular methods 
in the formulation of management strategies and the 
development of policy, its application to urban pest 
management is yet to be realized, offering an opportu-
nity to expand the technology to this field. 
Understanding the processes and patterns of invasion 
and dispersal, which includes infestation/reinfestation 
dynamics, and the evolution and spread of insecticide 
resistance, from a genomic perspective, may provide 
important insights that could prove informative in the 
development and efficacy of future management strate-
gies for urban pest control. Additionally, such informa-
tion may further our understanding of how species adapt 
and evolve to the anthropogenic pressures within the 
urban realm. In light of this, population genetics is now 
playing an increasingly important role in studies in-
vestigating invasion biology and the frequency and dis-
tribution of insecticide resistance in indoor urban pest 
insects [3–7]. 

Here, I review the literature on invasion and insecticide 
resistance of indoor urban pest insects from a population 
genetic perspective. While a diversity of insects can be 
found in our homes, I concentrate specifically on species 
for which data predominate, namely bed bugs (the 
common bed bug, Cimex lectularius, and the tropical bed 
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bug, C. hemipterus), the German cockroach (Blattella ger-
manica), cat fleas (Ctenocephalides felis), and human-asso-
ciated lice (Pediculus humanus spp.). 

Indoor urban pest insects: a brief introduction 
The indoor urban pest insects with which we associate, 
albeit involuntarily, originate from the Middle East 
(Cimex spp.), Asia (B. germanica, but note that as no free- 
living populations have been found outside of human- 
built structures, the actual origin is unknown), and Sub- 
Saharan Africa (C. felis and P. humanus). Owing to their 
close association with humans, each species now exhibits 
a near-global, cosmopolitan distribution, the exception 
being the bed bugs, with the common bed bug, C. lec-
tularius, primarily distributed in temperate regions, 
whereas the tropical bed bug, C. hemipterus, is largely 
found in tropical countries. While all can disperse ac-
tively over short distances or within contiguous struc-
tures, dispersal over larger distances is host-mediated. 
The females of each species are highly fecund, capable 
of producing hundreds (C, lectularius, C. hemipterus, B. 
germanica, and P. humanus spp.) to thousands (C. felis) of 
offspring over their lifetime. While B. germanica is a 
generalist omnivore, primarily associated with low so-
cioeconomic households, restaurants, and hotels, C. lec-
tularius, C. hemipterus, C. felis, and P. humanus spp. are 
hematophagous, requiring frequent bloodmeals from 
their respective hosts to complete development and re-
production, and are found across all socioeconomic 
classes. As a result of their ability to either spread disease 
or cause allergic reactions in their hosts, all are con-
sidered species of medical and/or veterinary significance. 

Invasion 
When considering indoor urban pest insects, invasion 
can be viewed hierarchically. At its finest scale, studies 
have revealed the infestation dynamics within single 
buildings or apartment complexes [8–12], with evidence 
supporting both single and multiple independent inva-
sions and both passive and active modes of dispersal 
from one room to another. Alternatively, due to the 
propensity for human-mediated movement driving the 
dispersal of many indoor urban pest insects, we may 
view invasion at greater geographic scales, from regional 
to intercontinental [6,7,10–13]. To date, it has proven 
difficult to disentangle local-scale dispersal patterns from 
long-distance human-mediated movement, largely as a 
result of insufficient sample sizes and a lack of resolution 
of the genetic markers resulting from low levels of intra- 
infestation polymorphism. However, given the ease of 
sampling thousands of single-nucleotide polymorphisms 
from across the genome, coupled with a significant re-
duction in sequencing costs over recent years, these 
genome-wide high-resolution markers now offer a re-
markable opportunity to trace patterns of invasion and 
spread at multiple geographic scales. 

The genomic signature of invasion — founder effects, 
bottlenecks, and bridgeheads 
High propagule pressure and high levels of genetic di-
versity are two factors often credited to the success of a 
species invading a new area. Paradoxically, these criteria 
are rarely met by indoor urban pest insect species. 
Typically, infestations appear to be founded by few in-
dividuals, resulting in a genetic bottleneck upon in-
troduction [14]. This is then exacerbated by subsequent 
rounds of inbreeding during population establishment. 
As such, most indoor urban pest insect species are 
characterized by infestations that are genetically de-
pauperate (i.e. lacking genetic diversity) [7,14,15]. This 
is particularly true for bed bugs, both C. lectularius  
[9,10,16,17] and C. hemipterus [18,19], and human lice, P. 
humanus spp. [7], which exhibit remarkably low levels of 
intra-infestation genetic diversity, despite high levels of 
intraspecies diversity [7,14,18]. Additionally, gene flow 
into established infestations appears to be negligible  
[7,9,10,18,19], resulting in discrete lineages that propa-
gate and spread through both local and long-distance 
human-mediated dispersal. The combination of which 
means that genetic isolation-by-distance may be rarely 
observed [14]. 

Population-level data are missing for C. felis; however, at 
broader geographic scales, mitochondrial diversity ap-
pears low to moderate, depending on geographic region  
[20]. At the intra-infestation level, B. germanica exhibits 
low-to-moderate levels of genetic diversity [8,13,21], this 
may be reduced within infestations that experience in-
secticide-based management [21]. While population 
genetic studies that address levels of genetic diversity at 
the intra-infestation level are biased toward bed bugs, it 
appears clear that indoor urban pest insects are char-
acterized by low levels of diversity, a propensity to-
ward and resilience to inbreeding, and limited levels of 
gene flow. 

Studies of invasion have frequently identified secondary 
sources that act as bridgeheads for subsequent spread 
(i.e. invasive populations that then serve as a source for 
colonists for future invasions) [22]. Indoor urban pest 
insects represent an extreme example of this bridgehead 
model, as each infestation has the latent potential to act 
as a bridgehead, theoretically seeding many future in-
festations (Figure 1a); instead of a single or few popu-
lations acting as bridgeheads, as is commonly seen in 
other invasive species [22]. Following invasion, ex-
tensive inbreeding among founding individuals may 
occur, elevating the coefficient of inbreeding  
[9,10,14–16] (Figure 1b), and decreasing genome-wide 
heterozygosity [8–10,14–19] (Figure 1c). The rate at 
which the inbreeding coefficient may rise (Figure 1b) 
and genome-wide heterozygosity may drop (Figure 1c), 
within newly established populations, may be rapid due 
to founding propagules possessing low levels of 
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intraindividual heterozygosity and high levels of inter-
individual relatedness, as is commonly seen in indoor 
urban pest insect species [14,15]. The success of such 
genetically depauperate, inbred populations, may result 
from the genetic purging of deleterious recessive muta-
tions exposed during population foundation at each in-
vasion step, resulting in lineages shaped through 
selection during prior invasions that possess preadapted 
gene complexes that promote invasion success to the 
indoor environment. These lineages may then be suc-
cessful, both spatially and temporally (i.e. comprising 
multiple bridgeheads, potentially spread over large 
geographic areas, and long-lasting), explaining the global 
distribution and continued spread of many indoor urban 
pest species. 

The distribution and frequency of insecticide 
resistance 
In contrast to the relatively limited number of studies 
addressing the population and invasion genetics of in-
door urban pest insects, studies reporting the distribu-
tion and frequency of insecticide resistance-associated 
mutations are more common [3,5,23–26]. While me-
chanisms conferring resistance to insecticides are diverse  
[1,2,4], target-site mutations conferring insensitivity, 
namely those targeting the γ-amino butyric acid 
(GABA)-gated chloride ion channel receptor and the 
voltage-gated sodium channel (VGSC), are easily se-
quenced, and as a result are frequently studied. 

Mutations exist in two forms: a) synonymous, where a 
mutation that alters the DNA sequence does not result 
in an amino acid change, and b) nonsynonymous, where 

the mutation results in an amino acid change. The 
former will have no influence on the sensitivity to in-
secticides (but may be informative when investigating 
patterns of gene flow), whereas the latter has the po-
tential to alter the conformational structure of the re-
sulting protein and hence its functionality. Across indoor 
urban pest insect species, studies have identified an 
array of nonsynonymous mutations, some common 
across unrelated species (e.g. A302S — GABA-receptor 
Rdl; L993F/L1014F — kdr). 

γ-Amino butyric acid and the resistance to 
dieldrin mutation 
The resistance to dieldrin (Rdl) mutation of the GABA 
receptor confers target-site insensitivity to insecticides 
belonging to the cyclodiene (e.g. dieldrin) and phe-
nylpyrazole (e.g. fipronil) families. In several species of 
indoor urban pest insect, the Rdl gene encoding the 
GABA receptor has been identified and a common 
nonsynonymous substitution has been found, which re-
sults in an alanine (A) to serine (S) switch at amino acid 
position 302 (A302S) [27,29,30]. While the mutation in 
the homozygous states confers a high level of resistance, 
heterozygotes also exhibit an elevated level of in-
sensitivity, relative to the homozygous wild type [31], a 
factor that may promote spread. 

Within both B. germanica and C. felis, the A302S mutation 
appears to be common and geographically widespread, 
reported in the United States, United Kingdom, Europe, 
Asia, and Australia [27,30–38]. In contrast, while genome 
sequencing has confirmed the presence of the Rdl sub-
unit in both C. lectularius [28] and P. humanus [29], 

Figure 1  

Current Opinion in Insect Science

(a) Hypothetical invasion pathways characterized by multiple bridgehead populations. Each population may act as a bridgehead for successive 
invasions. (b) Theoretical change in inbreeding coefficient as the number of invasion steps increases. Each successive population is founded by a 
small number of related individuals. With negligible gene flow into new populations, the inbreeding coefficient will increase rapidly with each invasion 
step. (c) Theoretical pattern of heterozygosity loss as the number of invasion steps increases. With each step, rare alleles are lost and common alleles 
become fixed, reducing genome-wide heterozygosity.   
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population-level studies investigating the frequency and 
distribution of mutations in this subunit in P. humanus 
are lacking, and only a single study has been published 
to date for C. lectularius. The authors, however, failed to 
detect the mutation in any of the 10 field-collected 
strains (9 United States and 1 Czech) examined [39]. 
Additionally, I am unaware of any study investigating 
Rdl-associated mutations in C. hemipterus. Regardless of 
species, it is clear that there is a paucity of large-scale 
geographic or temporal studies regarding indoor urban 
pest insects. 

Voltage-gated sodium channel and knockdown 
resistance 
Nonsynonymous mutations have been identified in the 
gene encoding the VGSC α-subunit of a variety of pest 
insects, including a number of indoor-associated species  
[40–42]. Many of these have been shown to alter the 
functionality of the sodium channel, commonly referred 
to as knockdown resistance (kdr), resulting in in-
sensitivity to pyrethroid, pyrethrin, and organochlorine 
insecticides. 

The number of mutations detected within the VGSC 
has been found to vary markedly across species, with 
some exhibiting few (e.g. C. felis — 2), while in others, 
many have been detected (e.g. B. germanica/P. humanus 
spp. > 8). Interestingly, this pattern has also been found 
within a single genus. In C. lectularius, three mutations 
have been reported [40], whereas potentially eight or 
more have been found in C. hemipterus [43–45]. This 
does not appear to be related to the number of samples 
screened, where the failure to detect a mutation may 
result from a small sample size, as Lewis et al. [5] re-
ported kdr profiles for 394 unique infestations, detecting 
only the three previously identified. Furthermore, a ca-
veat of exhibiting multiple mutations is that meta-ana-
lyses are complicated when the frequencies of all 
potential mutations are not reported; either as a result of 
gene fragments featuring mutations not being se-
quenced in a given study, or the authors being unaware 
of additional variable sites in a given fragment. We 
cannot assume that a mutation is absent if the mutation 
frequency is not reported for a given study. 

With the exception of Hodgdon et al. [3] (P. humanus), 
studies reporting the kdr-associated mutation fre-
quencies for indoor urban pest populations on a global 
scale are lacking. That said, some mutations are 
common, even across species, and data can be compiled 
across studies to provide a global picture (Figure 2a–d). 
For all species discussed here, resistance alleles are 
globally distributed. However, the frequency of these 
does vary geographically. For example, within P. hu-
manus spp., the 917/929 resistance allele appears less 
frequent in Asia versus northern Europe (Figure 2c). 
Cimex lectularius homozygous for the 925-/419-resistant 

alleles predominates in the United States, whereas in 
Europe, the Middle East, and Australia, the 419-resistant 
allele is largely absent (Figure 2b). In contrast, in C. 
hemipterus, I am unaware of any study that documents 
infestations of wild type (susceptible) at M918I and 
L1014F, with all infestations reported homozygous for at 
least one resistant allele, and the majority homozygous 
resistant at both [43–50]. 

Few studies report kdr-associated mutation frequencies 
across temporal scales [5,46]. For those that do, or for 
species for which data can be compared temporally 
across multiple studies, the trend is for resistant-allele 
frequency and/or the number of mutations conferring 
resistance, to increase. The frequency of resistance al-
leles within populations of P. humanus spp. sampled 
across the United States between 1999 and 2009 was 
∼84%; however, when considering only those collected 
between 2007 and 2009, the frequency increased to 
∼97% [51]. This was corroborated by Gellatly et al. [52] 
who report a resistant-allele frequency of ∼98%, with 
132 of 138 U.S. populations sampled between 2013 and 
2015 having a resistance allele frequency of 100%. Si-
milarly, in C. lectularius, Lewis et al. [5] reported an in-
crease in the 925/419 double mutant from 50% to 84% in 
samples collected approximately a decade apart 
(2005–2009 versus 2018–2019). The reasons for this 
cannot be conclusively identified; however, these trends 
suggest populations are subjected to anthropogenic 
pressures that are selecting for resistant alleles, and that 
susceptible alleles are becoming rare within/among po-
pulations. Within populations in which mutations con-
ferring insecticide resistance are fixed, target-site- 
associated susceptibility will only be recovered when 
either gene flow occurs from susceptible populations or 
back mutations to a susceptible state take place. These 
must also be coupled with an ease in selection pressure 
(i.e. reduction in insecticide application). However, 
within indoor urban pest insects, gene flow among po-
pulations appears rare, and the frequency at which back 
mutations take place is unknown. 

Temporal studies of population genetics may also play 
an important role in understanding the evolution of in-
secticide resistance, through disentangling selection 
upon standing genetic variation pre-existing within a 
population before the onset of insecticide introduction 
versus novel mutation following introduction. 
Addressing this question is only possible through the use 
of museum specimens as many insecticides were in-
troduced decades ago (e.g. DDT in the 1940s). A caveat 
associated with this, is that storage conditions within 
museums (i.e. frequently in 70% ethanol at room tem-
perature or dry-pinned) often result in specimens ex-
hibiting a high degree of DNA degradation. This will 
result in short DNA fragments that might not be PCR- 
amplifiable; thus, next-generation sequencing methods 
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may be required. Similarly, without studies over broad 
geographic scales, linked to studies of gene flow, it is 
impossible to determine whether selection/mutation 
occurred independently in multiple regions or once and 
then spread. Interestingly, while target-site-associated 
insecticide resistance has been shown to have associated 
fitness costs [53], ‘modifier’ loci may alleviate these costs  
[54]. The relative effects that target-site mutations may 
confer on fitness in the indoor urban pest insects dis-
cussed here require further investigation, as some stu-
dies have failed to detect a negative effect [30,55], while 
others suggest that fitness effects may be significant [56]. 
The geographically widespread nature of mutations in 
the GABA receptor and VGSC in these indoor pest 
species suggests that the fitness costs may be insufficient 
to eliminate them from the populations, thus, it is likely 
that mutations will remain common in populations long 
after specific insecticide classes are removed from use. 

Evident following a review of the literature is the lack of 
information relating to field-collected C. felis. Instead, 
studies report resistance allele frequencies in lab strains 
originating from samples collected in the field often years 
earlier [35,60]. Similarly, studies largely fail to report re-
sistance allele frequencies of P. humanus spp. per in-
dividual, but instead frequencies are derived from sample 
pools collected across multiple individuals and often 
multiple collection sites [51,52,57–59,61–63]. This creates 
a problem when we consider what exactly constitutes a 
population of an indoor urban pest insect. For example, P. 
humanus spp. infesting a single human may be viewed as a 
population within a metapopulation framework, the me-
tapopulation being the children/adults that make up a 
school. Reporting only the allele frequencies of the me-
tapopulation provides no information regarding the dy-
namics within each single population, and as a result 
cannot be used to infer source-versus-sink dynamics 
(i.e. populations with positive growth rates that act as a 
source of emigrants versus populations with negative 
growth rates sustained by immigration), in addition to 
population-specific characteristics. The sources of given 
variants may be multiple, and indeed not all variants may 
be present in all populations, thus reporting a metapo-
pulation frequency cannot be used to understand the 
origin and spread of resistance-associated alleles. 

Conclusion 
It is clear from this review that studies investigating the 
temporal and geographic dynamics of indoor urban pest 
insect invasions are largely lacking. Those published to 
date, have primarily focused at small scales, from within 
building [8,9,12] to within regions [10,11,17]. While 
these have provided important insights into local and 
regional levels of structure, understanding gene flow 
across larger geographic scales is essential to understand 
the dynamics of spread and could prove informative in 

the development of control strategies through the 
identification of source and sink populations. The po-
tential for this has greatly improved in recent years with 
the generation of reference genomes for several species, 
including C. lectularius, B. germanica, C. felis, and P. hu-
manus spp. These genomic resources provide a basis 
from which population-level sequencing can be used to 
understand gene flow, selection, investigating the evo-
lution of insecticide resistance through disentangling 
standing genetic variation in ancestral populations from 
the evolution of novel mutations, and identifying novel 
insecticide targets [28,64]. Given the widespread dis-
tribution of resistant kdr- and Rdl-associated alleles, this 
is particularly timely. 

Through the use of population genetics, four character-
istics have emerged that explain the invasion success of 
indoor urban pests: a) the ability to seed new infestations 
from small numbers of genetically depauperate founders, 
b) the ability to resist the potentially harmful effects of 
prolonged rounds of inbreeding, c) negligible levels of 
gene flow, and d) populations comprising individuals that 
possess one or more insecticide resistance mechanisms. 
Given this, it is easy to understand the near-global dis-
tribution of the indoor urban pest species discussed here. 
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